Optimization of array geometry for direction-of-arrival estimation using a priori information
نویسندگان
چکیده
This paper focuses on the estimation of the direction-of-arrival (DOA) of signals impinging on a sensor array. A novel method of array geometry optimization is presented that improves the DOA estimation performance compared to the standard uniform linear array (ULA) with half wavelength element spacing. Typically, array optimization only affects the beam pattern of a specific steering direction. In this work, the proposed objective function incorporates, on the one hand, a priori knowledge about the signal’s DOA in terms of a probability density function. By this means, the array can be adjusted to external conditions. On the other hand, a modified beam pattern expression that is valid for all possible signal directions is taken into account. By controlling the side lobe level and the beam width of this new function, DOA ambiguities, which lead to large DOA estimation errors, can be avoided. In addition, the DOA fine error variance is minimized. Using a globally convergent evolution strategy, the geometry optimization provides array geometries that significantly outperform the standard ULA with respect to DOA estimation performance. To show the quality of the algorithm, four optimum geometries are presented. Their DOA mean squared error is evaluated using the well known deterministic Maximum Likelihood estimator and compared to the standard ULA and theoretical lower bounds.
منابع مشابه
تعیین حد پائین واریانس خطای تخمین برای زاویه سیگنال دریافتی با استفاده از روش CRB در آنتن های آرایه ای
One of the important issues in many of array systems such as Radar, Sonar, Mobile, and satellite telecommunications is the estimation of DOA of narrowband received signal. CRB is very important in evaluation of parameter estimation. CRB is the lower bound estimation error variance for any unbiased estimation. In this paper, the array antenna with equal distance arrays is extended in two separat...
متن کاملBiologically Inspired Four Elements Compact Antenna Arrays With Enhanced Sensitivity for Direction of Arrival Estimation
A new four elements compact antenna array is presented and discussed to achieve enhanced phase resolution without sacrificing the array output power. This structure inspired by the Ormia Ochracea’s coupled ears. The analogy between this insect acute directional hearing capabilities and the electrically compact antenna array is used to enhance the array sensitivity to direction of arrival estima...
متن کاملWindowing Effects of Short Time Fourier Transform on Wideband Array Signal Processing Using Maximum Likelihood Estimation
During the last two decades, Maximum Likelihood estimation (ML) has been used to determine Direction Of Arrival (DOA) and signals propagated by the sources, using narrowband array signals. The algorithm fails in the case of wideband signals. As an attempt by the present study to overcome the problem, the array outputs are transformed into narrowband frequency bins, using short time Fourier tran...
متن کاملWindowing Effects of Short Time Fourier Transform on Wideband Array Signal Processing Using Maximum Likelihood Estimation
During the last two decades, Maximum Likelihood estimation (ML) has been used to determine Direction Of Arrival (DOA) and signals propagated by the sources, using narrowband array signals. The algorithm fails in the case of wideband signals. As an attempt by the present study to overcome the problem, the array outputs are transformed into narrowband frequency bins, using short time Fourier tran...
متن کاملتخمین جهت منابع با استفاده از زیرفضای کرونکر
This paper proceeds directions of arrival (DOA) estimation by a linear array. These years, some algorithms, e.g. Khatri-Rao approach, Nested array, Dynamic array have been proposed for estimating more DOAs than sensors. These algorithms can merely estimate uncorrelated sources. For Khatri-Rao approach, this is due to the fact that Khatri-Rao product discard the non-diagonal entries of the corre...
متن کامل